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Influence of anchoring at a nematic cell surface on threshold
spatially periodic reorientation of a director

MYKHAYLO LEDNEY*{ and IGOR PINKEVYCH{

{Physics Faculty, Kyiv National Taras Shevchenko University, Kyiv, Ukraine

{School of Physics, University of New South Wales, Sydney 2052, Australia

(Received 6 January 2005; accepted in revised form 29 April 2005 )

We have analysed the influence of surface director anchoring in a planar flexoelectric nematic
cell on the threshold spatially periodic reorientation of the director in an external dc electric
field. By minimizing the free energy of the nematic cell we obtained the equations for a
director and numerically solved them in the one elastic constant approximation. The
dependences of the threshold electric field and the spatial period of director structure on the
azimuthal and polar anchoring energy, as well as the flexoelectric parameters, are determined.
It is shown that the domain of the flexoelectric parameter values, at which the spatially
periodic reorientation of a director takes place, increases with decreasing azimuthal anchoring
energy and increasing polar anchoring energy.

1. Introduction

Director reorientation phenomena in nematic liquid

crystals (LCs) in electric or magnetic fields, in particular

the director threshold reorientation, are often used in

different electro-optical devices [1]. Mostly, the uniform

(in a cell plane) reorientation of a director has attracted

attention. However, in some cases the spatially periodic

structure of a director field can arise in a cell plane at

the director threshold reorientation. This phenomenon

was considered by Bobylev and Pikin [2] and Bobylev

et al. [3] in the case of a flexoelectric nematic LC and at

the initial planar orientation of a director in a cell.

Lonberg and Meyer [4] have shown that spatially periodic

threshold reorientation of a director can also arise in a

non-flexoelectric LC if the Frank elastic constants of the

LC satisfy the inequality K2,rK1, where r,0.3. Galatola

et al. [5] have studied the general behaviour of planar

nematic layer in the external electric field taking into

account the flexoelectricity and dielectric anisotropy as

well. In these papers, the model of an infinitely rigid

director anchored at the nematic cell surface was used.

Despite orientational transitions in nematic cells

being bulk effects, their characteristics as the threshold

field value and the director reorientation degree can

essentially depend on the strength of director anchoring

at the cell surface. In particular, Oldano [6] and Miraldi

et al. [7] noticed that the type of director field structure

arising at the orientational transition depends on the

strength of director anchoring at the cell surface.

Romanov and Sklyarenko [8] have studied the influence

of the strength of director anchoring at the cell surface on

the threshold and spatial period of director reorientation

in the homeotropic flexoelectric nematic cell.

In present paper we study theoretically the spatially

periodic threshold reorientation of a director under an

external dc electric field in a planar flexoelectric nematic

cell with arbitrary strength of director anchoring at the

cell surface. In this case the flexoelectric polarization

appears not only in the differential equations for a

director, since it takes place at the the threshold

orientational transition in the homeotropic cell, but

also in the boundary conditions for the director as well.

Besides, director anchoring at the cell surface is now

described by two parameters, the azimuthal and polar

anchoring energies, in accordance with the azimuthal

and polar director deviations in the planar nematic cell.

The paper is arranged as follows. In section 2 we present

the basic equations that manage the director in the planar

flexoelectric nematic cell in an external electric field and

give the general solution to the equations in the cell bulk.

In section 3 we take into account the boundary conditions

and numerically (analytically in the limiting cases) study

the dependence of the threshold field value and the spatial

period of director structure on both the director azimuthal

anchoring energy and the flexoelectric parameter value.

The influence of the director polar anchoring energy on

the threshold field and the director period is analysed in

section 4. In section 5 we give the brief conclusions that

follow from the results obtained in the paper.*Corresponding author. Email, ledney@iniv.kiev.ua
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2. Basic equations

Let a plane parallel flexoelectric nematic cell be

bounded by the planes z52L/2 and z5L/2 with initial

planar director oriented along the axis Ox. The cell is

placed into the spatially uniform dc electric field E

directed along the axis Oz.

The free energy of a nematic cell in the one elastic

constant approximation can be written as follows [9]

!

F~FelzFEzFdzFS,

Fel~
K

2

ð

V

divnð Þ2z rotnð Þ2
n o

dV ,

FE~{
ea

8p

ð

V

nEð Þ2dV ,

Fd~{

ð

V

e1 nEð Þdivnze3 rotn|n½ �Eð Þf gdV ,

FS~{
WQ

2

ð

S1, 2

cos2Q dS{
Wh

2

ð

S1, 2

cos2h dS,

WQw0, Whw0,

ð1Þ

where Fel, FE, Fd are the contributions to the free ener-

gy from the Frank elastic energy, the anisotropic and

flexoelectric interaction of the LC with electric field,

respectively, FS is the surface free energy of the LC

written in the model of Rapini–Papoular [10], n is a

director, ea5e||–eH.0 is the static dielectric anisotropy of

the LC, e1, e3 are the flexoelectric coefficients, and Wh,

WQ, h, Q denote, respectively, the energies of polar and

azimuthal anchoring of a director at the cell surface and

the director deviation angles in the planes xOz and xOy.

Strictly speaking, one must also take into account the

fact that the flexoelectric polarization induces an

electric field, which couples with the flexoelectric

polarization itself, and include the corresponding term

into equation (1) for the free energy. As was shown by

Bobylev and Pikin [2], this term renormalizes the Frank

elastic constant Ki only on the value of order 0.01Ki. On

the other hand, as was noted by Madhusudana and

Durand [11] and Barbero et al. [12], at the director

deformations, which are larger than a Debye screening

length (the last is of order one micron in the commercial

LCs [13]) the flexoelectric contribution to the free

energy can be described by a linear coupling of the

flexoelectric polarization with an external field, just that

very case we will investigate in this paper.

To consider the reorientation of a director, which is

spatially periodic along the axis Oy one can seek a

director in the form

n~i cos h y, zð Þcos Q y, zð Þ

zj cos h y, zð Þsin Q y, zð Þzk sin h y, zð Þ,
ð2Þ

where i, j, k are the Cartesian unit vectors.

Substituting the equation (2) into equation (1) and

minimizing the obtained expression for the free energy

we get in the linear h and Q approximation the next

stationery equations

K
L2h

Ly2
z

L2h

Lz2

 !
z[E2hzeE

LQ

Ly
~0,

K
L2Q

Ly2
z

L2Q

Lz2

 !
{eE

Lh

Ly
~0,

ð3Þ

and the boundary conditions

Wh+eoEð Þh+K
Lh

Lz
z

LQ

Ly

� �� �
z~+L=2

~0,

WQ
:Q+K

LQ

Lz
{

Lh

Ly

� �� �
z~+L=2

~0,

ð4Þ

where we have introduced the designations [~ ea

4p, e5e1–

e3?0, eo5e1+e3.

Taking into account the symmetry of equations (3)

one can seek the solution to these equations in the form

h y, zð Þ~h0 cos qyð Þeipz, Q y, zð Þ~Q0 sin qyð Þeipz: ð5Þ

Substituting the equation (5) into equation (3) we

obtain the system of two homogeneous algebraic

equations to determine the unknown coefficients h0

and Q0. The condition of non-trivial solution to the

system gives us the equation to determine the unknown

quantity p

Kq2zKp2
� �2

{[E2 Kq2zKp2
� �

{ eEqð Þ2~0: ð6Þ

From this system of equations we also obtain the

ratio

Q0

h0
~

eEq

Kq2zKp2
:a pð Þ: ð7Þ

Solving the equation (6) we get p5¡p1, ¡p2, where

p1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2K
[E2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q� �
{q2

s
,

p2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2K
[E2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q� �
{q2

s
:

ð8Þ
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In these designations the general solution to equa-

tions (3) takes the form

h y, zð Þ~cos qyð Þ a1 cos p1zza2 sin p1zð

zb1 cos p2zzb2 sin p2zÞ,

Q y, zð Þ~sin qyð Þ a1 a1 cos p1zza2 sin p1zð Þ½

za2 b1 cos p2zzb2 sin p2zð Þ�,

ð9Þ

where

a1~a p~+p1ð Þ~ 2eEq

[E2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q ,

a2~a p~+p2ð Þ~ 2eEq

[E2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q
ð10Þ

and ai, bi (i51, 2) are the constants which have to be

determined from the boundary conditions of equa-

tion (4). It should also be noted that, as it follows from

the definition in equation (8), the parameter p2 is always

an imaginary value while p1 can take, in principle, both

the real and imaginary values.

3. Influence of the azimuthal anchoring energy

Let us suppose the director polar anchoring energy to

be infinite, Wh5‘, whereas the director azimuthal

anchoring energy, WQ, can take the arbitrary values.

In this case the boundary conditions of equation (4)

take the form

hjz~+L=2~0,

WQ
:Q+K

LQ

Lz

� �
z~+L=2

~0:
ð11Þ

Substituting equation (9) into the boundary conditions

of equation (11) one can obtain the system of four

homogeneous algebraic equations to find the coeffi-

cients ai, bi (i51, 2). The condition of non-trivial

solution to the system takes the form

cos
p1L

2
cos

p2L

2
2WQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q
z

�

zKp1 [E2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q� �
tan

p1L

2
{

{Kp2 [E2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q� �
tan

p2L

2

	
~0:

ð12Þ

Substituting into equation (12) the expressions given

by equation (8) for p1 and p2 we can obtain the electric

field E as a function of parameter q. To obtain it in a

general case of the arbitrary value of WQ one has to use

numerical methods. But in the limiting case of the

infinitely rigid director anchoring with the cell surface

(WQ5‘) it is more easy first to solve equation (12) that

gives us the real value p1~
p
L

2sz1ð Þ, where s is an

integer. Then from the first equation (8) we obtain the

function E(q), which has the form

E? qð Þ~
q2z p

L
2sz1ð Þ

� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2zn q2z p

L
2sz1ð Þ

� �2
h ir :K

e
, ð13Þ

where we have introduced the flexoelectric parameter

n~
[K

e2
w0:

The orientation instability threshold is determined by

a minimum value of the function E‘(q) and equals

E?
c ~E? q?

c

� �
~

2pK

ej j 1znð ÞL , ð14Þ

where the wave number of the arising periodic structure

of a director equals

q?
c ~

p

L

ffiffiffiffiffiffiffiffiffiffi
1{n

1zn

r
, ð15Þ

in accordance with the results obtained by Bobylev and

Pikin [2].

One can see that in the case of an infinitely rigid

director anchored at the cell surface the spatially

periodic orientational instability of a director only

arises at the condition n,1.

We can now consider the case of the strong azimuthal

anchoring of a director (eQ~
WQL

K
&1), seeking a solution

to equation (12) in the form p1~
p
L

2sz1ð Þ 1{xð Þ, where

0,x,,1. Then, with accuracy to the terms linear in 1
eQ

,

we obtain from equation (12) the expression

p1~
p

L
2sz1ð Þ 1z

1

eQ

[E2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q
0
B@

1
CA, ð16Þ

and then further from the first equation (8) the expression

E qð Þ~E? qð Þ

1{
2

eQ

q2 p
L

2sz1ð Þ
� �2

q2z p
L

2sz1ð Þ
� �2


 �
q2zn q2z p

L
2sz1ð Þ

� �2

 �h i

8<
:

9=
;:
ð17Þ

Minimizing equation (17) gives us the electric field

threshold value

Ec~E qcð Þ~E?
c 1{

1{n

eQ

� �
, ð18Þ
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and the corresponding wave number, which equals

qc~q?
c 1z

1

eQ

3n{1

1{n

� �
, ð19Þ

if n,1 and eQ(1–n)..1, or

qc~
pffiffiffi
2
p

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

eQ
z1{n

s
, ð20Þ

if |1–n|,,1.

It can be seen from equations (18)–(19) that the

threshold field value always increases with increasing

azimuthal anchoring energy parameter eQ, whereas the

corresponding value of a wave number at the flexo-

electric parameter values n,1, eQ(1–n)..1 increases

with increasing eQ, if 0vnv 1
3
, and decreases, if 1

3
vnv1.

Besides, as can be seen from equation (20), the periodic

structure of a director appears even at the values of the

flexoelectric parameter n more than unity, depending on

the anchoring energy values, i.e. at nv1z 4
eQ

.

Meanwhile, one can also note that the inequality

dE

dq

����
q~0

v0 ð21Þ

is a general condition for the existence of the threshold

spatially periodic structure of a director field. Then

differentiating the equation (12) with respect to q in the

point q50 and making some algebraic transformations

we arrive to the inequality

nv1z
4

eQ
:nth, ð22Þ

which fulfils at the arbitrary values of the anchoring

energy parameter eQ. Thus the values of the flexoelectric

parameter n that determine the domain of existence of

the director periodic structure depend essentially on the

director azimuthal anchoring energy value. If eQR0 the

value of n can be practically the arbitrary.

Numerically calculated values of the dimensionless

threshold electric field, E0c~
ffiffiffi
[
K

p
EcL, and the corre-

sponding wave number, Qc5qcL, of a director with

spatially periodic structure as functions of the para-

meter eQ are shown in figure 1 for different fixed values

of the flexoelectric parameter n. In figure 2, the thresh-

old field E0c and the wave number Qc are shown as the

functions of the flexoelectric parameter n for different

values of the parameter eQ. For the numerical calcula-

tions we used ea50.2, K50.761026 dyn, the values of

the flexoelectric coefficients e1, e3 were taken from the

interval (0.7/2.5)61024 dyn1/2.

As one can see, the electric field threshold value, E 0c,

increases with increases in both the director azimuthal

anchoring energy, eQ, and the flexoelectric parameter, n

(figures 1 a and 2 a). However, at eQR0 the threshold

electric field value E0c approaches a constant value (at

the fixed values of the parameter n), which is not equal

to zero. It is conditioned by the fact that the director

azimuthal deviation is determined not only by the value

of WQ, but the director reorientation angle in the plane

xOz as well [see equation (7)]. Therefore the threshold

field value can not be less than that determined by the

polar anchoring energy value.

The period, lc~
2p
qc

~ 2pL
Qc

, of the director spatial

structure decreases monotonically with increasing eQ at

the flexoelectric parameter values 0vnv 1
3

(figure 1 b).

However, if the parameter nw 1
3

the period lc of the

director spatial structure depends on the anchoring

energy eQ non-monotonically, i.e. with increasing eQ the

quantity lc first decreases reaching some minimum

value and further increases approaching to the value

Figure 1. (a) Threshold field E0c and (b) wave number Qc

versus the azimuthal anchoring energy eQ for different fixed
values of n:n50.2 (1); 0.5 (2); 0.7 (3); 0.9 (4); 1.2 (5); 1.4 (6); 1.6
(7); 1.8 (8).
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l?
c ~ 2p

q?c
, which is determined by equation (15) for n,1,

or to the infinity if n.1.

From figure 1 b one can also see that for each value

of the parameter n.1 the azimuthal anchoring energy

critical value exists, namely, eQth~
4

n{1
, in accordance

with equation (22) (values of eQ, which correspond
Qc50). If eQ,eQth, the spatially periodic transition takes

place, but if eQ.eQth only a uniform transition (along the

Oy-axis) can be realized. At a fixed value of the

parameter eQ, the period lc of the director spatial

structure increases with increasing flexoelectric para-

meter n (figure 2 b).

4. Influence of the polar anchoring energy

Now let us suppose the polar anchoring energy, Wh, to

be an arbitrary value, whereas the azimuthal anchoring

energy equals infinity (WQ5‘). In this case the

boundary conditions of equation (4) take the form

Wh+eoEð Þh+K
Lh

Lz

� �
z~+L=2

~0,

Qjz~+L=2~0:

ð23Þ

Substituting equation (9) into the boundary condi-

tions of equation (23) we obtain, as in the previous case,

the system of homogeneous algebraic equations for the

coefficients ai, bi (i51, 2). The condition of non-trivial

solution to this system has the form

AB{ eoEð Þ2 [E2
� �2

z 2eEqð Þ2

 �h i

cos
p1L

2
sin

p1L

2
cos

p2L

2
sin

p2L

2
~0,

ð24Þ

where

A~Wh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q
{

1

2
Kp1

[E2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q� �
tan

p1L

2
z

z
1

2
Kp2 [E2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q� �
tan

p2L

2
,

B~Wh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q
z

1

2
Kp1

[E2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q� �
cot

p1L

2
{

{
1

2
Kp2 [E2{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q� �
cot

p2L

2
:

ð25Þ

In the limiting case of the infinitely rigid director

anchoring, Wh5‘, we can obtain from equation (24)

the results provided by equations (14)–(15). In the

case of the strong polar anchoring (eh~
WhL

K
&1), the

equations (24) and (8) can be solved, as in the case

of the strong azimuthal anchoring, putting

p1~
p
L

2sz1ð Þ 1{xð Þ, where 0,x,,1. Limiting our-

selves to the terms linear in 1
eh

we obtain from

equation (24)

p1~
p

L
2sz1ð Þ 1{

1

eh

[E2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[E2ð Þ2z 2eEqð Þ2

q
0
B@

1
CA, ð26Þ

and, correspondingly, from equation (8) the dispersion

dependence

E qð Þ~E? qð Þ 1{
2

eh

:
p
L

2sz1ð Þ
� �2

q2z p
L

2sz1ð Þ
� �2

( )
, ð27Þ

where E‘(q) is defined in equation (13).

Figure 2. (a) Threshold field E0c and (b) wave number Qc

versus the flexoelectric parameter n for different fixed values of
eQ:eQ550 (1); 10 (2); 5 (3); 2 (4).
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Minimizing equation (27) we obtain the threshold

field value

Ec~E qcð Þ~E?
c 1{

1zn

eh

� �
, ð28Þ

and the wave number of the director periodic structure,

which equals

qc~q?
c 1{

1

eh

1zn

1{n

� �
, ð29Þ

if n,1 and eh(1–n)..1, or

qc~
pffiffiffi
2
p

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{n{

4

eh

s
, ð30Þ

if |1–n|,,1.

Both the threshold field value, Ec, and the corre-

sponding wave number, qc, increase with increasing

polar anchoring energy, eh, at all permissible values of

the flexoelectric parameter, n. From this one can see

that the periodic structure of a director can only appear

if the flexoelectric parameter n satisfies the inequality

nv1{ 4
eh

. However, for arbitrary values of eh the general

criterion of existence of the threshold periodic structure

given by equation (22) does not come to the simple

analytical expression, as in the case of the arbitrary

azimuthal anchoring energy. In figure 3 we show the

results of numerical calculation of the critical values of

the parameter n in dependence on the values of eh for

some fixed values of the other flexoelectric parameter

no~
[K
e2

o
. Here n,nth determines the domain, where the

spatially periodic structure of a director exists. As can

be seen from figure 3, the finiteness of the polar

anchoring energy results in a narrowing of the domain

of the permissible values of the flexoelectric parameter

n, in comparison with the case of the infinitely rigid

director anchoring.

The threshold electric field E0c and the corresponding

wave number Qc versus the polar anchoring energy eh

are shown in figure 4 for some values of the parameter n
as a result of numerical calculation of equation (24). As

in the case of the strong anchoring, the threshold field

and the wave number increase monotonically with

increasing anchoring energy eh at all values of the

flexoelectric parameter, n. At that, as one can see from

figure 4 a, the threshold field E0c?0 if ehR0 even at

eQR‘. It is easy to understand if one takes into account

(see figure 4 b) that at small eh a director reorients only

in the plane xOz (unlike the case of small eQ and eh5‘

considered above). The dependences of the threshold

electric field E0c and the wave number Qc on the

Figure 3. Critical value of the parameter nth versus the polar
anchoring energy eh for different fixed values of no:no50.1 (1);
0.3 (2); 0.5 (3).

Figure 4. (a) Threshold field E0c and (b) wave number Qc

versus the polar anchoring energy value eh for no50.1 and
different fixed values of n:n50.2 (1); 0.5 (2); 0.7 (3); 0.8 (4).
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flexoelectric parameter n at the fixed values of the
polar anchoring energy parameter eh are shown in

figure 5. At all numerical calculations we put the

flexoelectric parameter no50.1. Its values weakly

influence the obtained dependencies E 0c ehð Þ, Qc(eh) and

E0c nð Þ, Qc(n).

5. Conclusions

The threshold electric field value, Ec, at which the

spatially periodic reorientation of a director takes place,

and the value of the director spatial period, lc, depend

essentially on the director polar and azimuthal anchor-

ing energy values. From this, Ec and lc depend more

strongly on the polar anchoring energy value, Wh, so as

WhR0 the threshold value EcR0 and the director

reorientation becomes uniform (lc5‘), irrespective of

the flexoelectric parameters values.

The domain of the values of the flexoelectric

parameter, n, at which the spatially periodic reorienta-

tion of a director exists, depends on the anchoring

energy value. In particular, in the case of the finite

values of the azimuthal anchoring energy this domain

enlarges, and in the case of the finite values of the polar

anchoring energy it becomes more narrow in compar-

ison with the case of the infinitely rigid director

anchoring (which gives n,1). There is a significant

difference with the case of homeotropic director

anchoring, where the domain of the values of the

flexoelectric parameter, n, at which the periodic

reorientation of a director takes place, does not depend

on the director anchoring energy value.

The influence of finite surface anchoring on the

director spatially periodic reorientation in the planar

nematic cell with non-equal elastic constants will be

considered in a subsequent paper.
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Figure 5. (a) Threshold field E0c and (b) wave number Qc

versus the flexoelectric parameter n for no50.1 and different
fixed values of eh:eh550 (1); 20 (2); 10 (3); 8 (4); 6 (5).
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